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©c Società Italiana di Fisica

Springer-Verlag 1999

Degeneracy and repulsion between bands of periodic carbon
nanotube junctions
R. Tamura and M. Tsukada

Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

Received: 26 August 1998

Abstract. The band structures of the periodic nanotube junctions are investigated by the use of effective
mass theory (k ·p approximation) and the tight binding model. The periodic junctions are constructed by
the periodic introduction of defect pairs, consisting of a pentagonal defect and a heptagonal defect, into the
carbon nanotube. We treat the periodic junctions whose unit cell is composed by two kinds of metallic nano-
tubes. The discussed energy region is near the undoped Fermi level where the channel number is kept to
2, so there are two bands. The degeneracy and repulsion between the two bands are determined only from
symmetries.

PACS. 72.80.Rj Fullerenes and related materials – 73.20.Dx Electron states in low dimensional structures
(superlattices, quantum well structures and multilayers) – 72.10.Fk Scattering by point defects, dislocations,
surfaces, and other imperfections (including Kondo effect)

A carbon nanotube is a one-dimensional structure formed
when the honeycomb lattice of the monolayer graphite
is rolled up [1]. Its radius and length are measured in
nanometers and micrometers, respectively. One of the
carbon nanotube’s interesting features, theoretically pre-
dicted [2] and investigated experimentally [3], is that it
becomes metallic or semiconducting according to the ra-
dius and the helicity of the honeycomb lattice forming
the tube. Metallic nanotubes especially are expected to be
used as electric leads with nanometer size. Thus we concen-
trate our discussion in this paper on metallic nanotubes.
A junction connecting different nanotubes can be formed
without dangling bonds by the introduction of a defect
pair, consisting of a pentagonal defect and a heptag-
onal defect [4–8]. Such defects are called disclinations
and are necessary for the formation of various struc-
tures composed of curved surface of graphitic layer [9,
10]. Among them, we treat the periodical multiple nano-
tube junctions in this paper, some of which have he-
lical forms [11, 12]. We have already obtained an ana-
lytical expression of the transmission rate of the sin-
gle junction. It is irrespective of the angle between the
two tube axes, and determined only by the ratio of the
circumferences of the nanotubes and the ratio |E/Ec|,
where Ec is the threshold energy above which the chan-
nel number increases [13]. In this paper, we will show
that some qualitative features of the band structures of
the periodical junctions can be derived only by their
symmetries.

The bond network of the nanotube junction is repre-
sented by the development map, Fig. 1. The circumference
of the tube in the development map is denoted by the

Fig. 1. Development map of the nanotube junctions. The lines
EP7, P7P5, P5G are connected and become identical with
the lines FQ7, Q7Q5, and Q5H, respectively. The rectangles
EP7Q7F and P5GHQ5 form the thinner tube and the thicker
tube, respectively. P7P5 is Q7Q5 rotated by an angle of 60 de-
grees, and the quadrilateral P7P5Q5Q7 forms a junction with
the shape of a part of a cone. A heptagonal defect and a pentag-
onal defect are introduced at P7(= Q7) and P5(= Q5), respec-
tively. The equilateral triangles ∆OP7Q7 and ∆OP5Q5, with
bases P7Q7 and P5Q5, have common apex O, which is taken to
be the origin of the polar coordinate (r, θ).

vector Rj (j = 5, 7). Here we use two pairs of the vectors
{e1, e2} and {ex, ey}, where ex = (e1 +e2)/

√
3, and ey =

e2−e1 represent vectors on the development map. e1 and



378 The European Physical Journal D

e2 are the basic translation vectors of 2D graphite, and the
angle between them is π/3, while that between ex and ey
is π/2. The four vectors have a common length of about
0.25 nm, denoted by a hereafter. In this paper, we concen-
trate our discussion on the metallic nanotube, so that only
the tube of which R1−R2 is an integer multiple of three
is considered [2]. The positions of the sublattices A and
B are represented by q = (q1, q2) and at q+τττ = (q1 + 1

3 ,
q2 + 1

3 ), respectively, with integer components q1 and q2. In
the effective mass theory (k ·p approximation), their wave-
function amplitude, ψA(q) and ψB(q), is represented by

ψi(q) = FKi (q)w(q1−q2) +FK
′

i (q)w(q2−q1) (i=A,B),
(1)

where w ≡ exp(i2π/3) and FK,K
′

A,B , w(q1−q2), w(q2−q1) are
the envelop wave functions and the Bloch state wave func-
tion at the K point and that at the K ′ point, respectively.

A tight binding model with only a π orbital is used,
where nearest-neighbor hopping integrals and site energies
are taken to be γ and zero, which are common for any sites.
By substituting (1) in the tight binding model, one ob-
tains [14]

√
3

2
γa (−i∂y +∂x)FKB =EFKA , (2)

√
3

2
γa (−i∂y−∂x)FKA =EFKB . (3)

Here, only the first-order term in the Taylor expansion
of the envelop functions, F , is taken. When E is close to
zero, it is a good approximation, because spatial variance
of the envelop function is slow compared to the lattice con-
stant, a. The equations of the envelop wave functions FK

′

A,B

can be easily obtained by −i→ i in (2) and (3). Hereafter
the envelop wave functions F are often simply called the
wave functions. When plane wave functions exp(ik ·q) are
applied to F in (2) and (3), one gets an isotropic linear dis-
persion relation,

E =

√
3

2
γa|k|. (4)

The boundary condition is k ·R = 2πl, with an integer l.
Discussions in this paper concentrate on the case whenE is
so close to zero that only l= 0 is permitted, i.e., k is parallel
to the tube axis. Therefore

FA(q)/FB(q) =± exp(−iη) , (5)

where η is the angle of R with respect to the x axis.
The amplitude of the plane wave in each tube part,

which is denoted by α, is obtained from (5) as

αKj± =
1√
2Rj

∫ Pj

Qj

dx(j)
(
ei
ηj
2 FKA ± e

−i
ηj
2 FKB

)
(j = 5, 7)

(6)

Fig. 2. Development map of the periodic junctions. The pos-
itions of the pentagonal defects and heptagonal defects are
denoted by the numbers 5 and 7, respectively. The upper
bold line is connected with the lower bold lines, so that the
points connected by the circumference vectors become identi-
cal. In this figure, R5 = (2, 5), R7 = (1, 4), L(5) = (4,−4), and

L(7) = (3,−3). The area between the two dotted lines is the
unit cell of the periodic junctions.

for the K point. The indices + and − mean directions in
which the electronic waves propagate. Equations for αK

′

j±
are obtained from (6) by the replacement of± andK in the
r.h.s with ∓ and K ′, respectively.

Figure 2 shows the unit cell of the periodic junctions,
which is determined by four vectors: the circumference of
the thicker tube R5, that of the thinner tube R7, and the
vector connecting the two pentagons (heptagons) in the
thicker and thinner tube parts, L(5) and L(7), respectively.
Transfer of the plane wave from the thicker tube to the
thinner tube is represented by a transfer matrix:(

ααα7+

ααα7−

)
=

(
t1,t
∗
2

t2,t
∗
1

)(
ααα5+

ααα5−

)
. (7)

By combining the transfer matrices, the two energy bands
of the periodic junctions, k

(p)
+ and k

(p)
− , are obtained from

t1 and t2 as

cos
(
k

(p)
±

)
= (8)

1

2

(
X11 +X22±

√
(X11−X22)2 + 4X2

21−4Y 2
21

)
,

where

X ≡Re
{

Λ
1/2
5 (tt1Λ7t1−

t t2Λ−1
7 t2)Λ

1/2
5

}
,

Y ≡Re
{

Λ
−1/2
5 (t†1Λ−1

7 t2− t
†
2Λ7t1)Λ

1/2
5

}
. (9)

Here, Λ represents the phase factor of the plane wave in the
tube part:

Λj = exp(ikj ·L
(j))

(
wlj , 0
0, −w−lj

)
, (10)

where lj ≡ L
(j)
1 −L

(j)
2 and j = 5, 7. Since w3 = 1, lj can take

a value of either 0 or±1 (mod 3). The factor exp(ikj ·L(j))
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comes from the envelop functions F , and the other part
comes from the Bloch states at K orK ′.

To discuss the symmetry, we use the scattering ma-
trix S. The scattering matrix S determines the outgoing
waves for the incoming waves as(

ααα5−

ααα7+

)
=

(
r5, t
tt,r7

)(
ααα5+

ααα7−

)
, (11)

where ααα+ =t (αK+ , α
K′

+ ) and ααα− =t (αK
′

+ , αK+ ) , each com-
ponent of which is defined in (6). The relation between (7)
and (11) is represented as

t1 = (1/t)∗, t2 =−(1/t)r5 . (12)

Consider the operation Q1 defined as Q1(FKA , F
K
B , F

K′

A ,

FK
′

B ) = (−FK
′

B , FK
′

A , FKB ,−F
K
A ). The amplitudeααα is trans-

formed by this operationQ1 as

Q1ααα± =±

(
0,1
1,0

)
ααα± ≡±σ1ααα± . (13)

Since the effective mass theory equations (2) and (3) and
the boundary conditions are invariant under the operation
Q1,

−σ1rjσ1 = rj , σ1tσ1 = t (j = 5, 7). (14)

It is generally guaranteed by conservation of flow and time
reversal symmetry that S is a symmetric unitary matrix.
This general condition and the condition (14) determine
the form of S as

rj =
√
Reipj

(
1, 0
0,−1

)
(j = 5, 7), (15)

and

t=
√
Tei(p5+p7)

(
cos(f), i sin(f)
i sin(f), cos(f)

)
, (16)

where R and T = 1−R are the reflection rate and the
transmission rate, respectively, while pj and f are certain
real values. The meaning of f is discussed below.

Consider operation Q2 shown in Fig. 3. Under the op-
eration Q2, the upper development map is transformed
into the lower development map and the angle between the
two tube axes in the development map, φ ≡ η7− η5, de-
creases by π/3 as φ′ = φ−π/3. The two development maps
in Fig. 3 correspond to identical junctions. The only differ-
ence is how the cutting line on the honeycomb plane of the
junction is drawn. Therefore the S matrix of the upper de-
velopment map becomes the same as that of the lower one,
after a unitary transformation corresponding to the opera-
tion Q2. The boundary condition in the junction part is(

FKA , F
K
B , F

K′

A , FK
′

B

)
|θ+π/3

=

(
1

w
FK

′

B , wFK
′

A , wFKB ,
1

w
FKA

)
|θ , (17)
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Fig. 3. The operation Q2, which fixes the thinner tube part
but rotates the thicker tube part by π/3 in the development
map. The upper development map is transformed into the lower
one under the operation Q2. These two development maps cor-
respond to the identical junctions, denoted by the (1,4)–(2,5)
junctions.

where the polar coordinate defined in Fig. 1 is used [13, 15].
By using it and η′5 = η5 +π/3 in (6), we get

Q2ααα5± =±iσ1ααα5±, (18)

while Q2ααα7± =ααα7±. From this symmetry, we can derive

r5(φ−π/3) = −σ1r5(φ)σ1

t(φ−π/3) = − iσ1t(φ) , (19)

which leads to

f(φ) = f(0) +
3

2
φ . (20)

Finally, we consider the coordinate transformation from
the right-handed coordinate to the left-handed coordinate
Q3, (x, y)→ (−x, y). It causes ηj →−ηj , φ→−φ, and ex-

change between the sublattices, Q3(FKA , F
K
B , F

K′

A , FK
′

B ) =
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Fig. 4. The band structures of the periodic junctions. The ver-
tical axis is the energy in units of the absolute value of the
hopping integral, |γ|=−γ. Triangles and solid lines are the re-
sults from the tight binding model and those from the effective
mass equations, respectively. These coincide fairly well. (a) l5 =

l7 = 0 and φ ' 0.034π. R7 = (1, 10), R5 = (3, 12), L(7) =

(4,−5), and L(5) = (6,−3). (b) l5l7 = −1 and φ ' 0.14π.

R7 = (10, 1), R5 = (7, 7), L(7) = (6,−5), and L(5) = (13,−6).

(FKB , F
K
A , F

K′

B , FK
′

A ), so that

Q3ααα± =

(
1, 0
0,−1

)
ααα± ≡ σ2ααα± . (21)

The result is

rj(−φ) =σ2rj(φ)σ2 (j = 5, 7)

t(−φ) =σ2t(φ)σ2 , (22)

which indicates that

f(0) = 0 (23)

in (20).
As for the factors T and pj , one has to solve the effective

mass equations to get more information on them, but there
is an important result obtained solely from the argument of
the symmetries. As is shown in Fig. 4a, the two bands k

(p)
+

and k
(p)
− are almost degenerate when l5 = l7 = 0. On the

other hand, the two bands avoid each other when l5l7 = 1,
φ 6= 0, or l5l7 =−1, φ 6= π/3 as is shown in Fig. 4b. These
can be explained from (8). The origin of the degeneracy
in the former case is that both X and Y are diagonal and
X11 = X22 [16]. The origin of the repulsion between the
bands in the latter case is that Y has nonzero off-diagonal
elements. These origins can be derived only from (15), (16),
(20), and (23), without solution of the effective mass equa-
tions.
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